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Abstract

In this thesis, a global solution and stability of zero solution in connection with constant

delay stochastic differential equation is researched. Firstly, generalized the theory is established

with the adoption of the Lyapunov function, in order to establish the judging criteria for the

constant delay stochastic differential equation, namely the uniqueness of a global solution and

stability of its zero solution exponent regarding equation (1) when y(t)=x(t-T). Then, equation

coefficients f and g are subject to growth limitations to make generalized conditions specific

and acquire conditions which directly depend on equation coefficients. Lastly, the effectiveness

of result in this paper is verified through two specific examples.
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1. Introduction

Stochastic differential equations of the following forms are researched in this thesis based

on existing literature:

   ,
p nconst x V x x 
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            , , 1 , 0, , nV t x y t K Q t V x V y t x y          (1)

Where, f=(f1,f2,...,fn)T:R+RnRnRn and g=[gij]nm:R+RnRnRnm are Borel

measurable function; w(t) is m-dimension standard Brownian motion; x(t)(t0) is the stochastic

process of unknown R"; x(t) represents system status at time t. When y(t)=x(t-T), the

abovementioned equation is a delay stochastic differential equation. When y(t)=x(t-(t)), where

(t) is a variation delay, the abovementioned equation will be a variational delay stochastic

differential equation.

In this thesis, t0=0 is always the initial time. It is assumed that x(t,) is the solution to the

given equation when  is the initial value. In case it is defined as x(t,), it will be considered a

global solution. The global solution is important because its existence is the precondition for

research on the asymptotic nature of the equation, without which it would be impossible to

observe its asymptotic nature. Secondly, it is always assumed that coefficients of the equation

are such that f(t,0,0)=g(t,0,0)=0, which ensures that there will be a trivial solution x(t,0) for

equation (1). It is the precondition for research on real solutions to the equation and the

stability of its numerical solution and zero solution.

2. Stochastic stability theory

The existence of a global solution is the precondition for research on the asymptotic nature

of a solution to equation. To put it intuitively, the existence of a global solution means that the

solution to the equation will not blast within any limited time period. Among the existing

theories concerning the stochastic differential equation, a number of proven results have been

provided regarding the uniqueness of of a global solution to the stochastic differential equation

with bounded delay. In order to guarantee that there is only one unique global solution for any

initial value or equation, the equation coefficient will, in most cases, either satisfy the liner

growth condition and the local Lipschitz condition [9] or the non-Lipchitz condition and the

liner growth condition [8]. In this thesis, the linear growth condition for the existence of a

global solution is replaced by conditions that are more common [10].

Stability has been extensively researched as the central subject of either a deterministic or

stochastic dynamical system theory. In 1892, Lyapunov A.M.[4], a Russian mathematician,

introduced the concept of stability in a power system. In brief, stability theory is applicable to
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such problems: ultimate state of x(t,), solution to a differential equation, when t;

dependence relation between such ultimate state and the initial value  . The answer to such

questions is related to the long-term behavior of the development system described in the

equation, to which researchers of different fields all pay close attention. No matter in theories

concerning an ordinary differencing equation or theories concerning a stochastic differential

equation, stability is always the most heeded central subject, and related literature constitute a

large portion of theories concerning differential equations.

The development of stochastic stability theory is based on stability theory of a

deterministic system. The deterministic system described in ODE is:

     0= , ,x t f t x t t t


(2)

Initial value x(t0)=x0Rn, the stability theory was first considered by Hahn [5] and

Lakshmikantham, et al. [6]. If an explicit solution to equation (1) can be acquired when

f(t,0)=0, it would be easy to judge if its zero solution is stable. However, in most cases,

equations in the form of equation (1) are not likely to have an explicit solution. Lyapunov

proposed a method in 1892 [4] during his research on the stability of deterministic systems.

With adoption of such a method, there is no need to solve the equation. It is a method to

directly determine the stability by adopting the said Lyapunov function  , xV t and symbols of

derivative  , xV t with a disturbed solution. Such a method is called the Lyapunov direct method

or the Lyapunov second method.

Application of Lyapunov stability theory to a stochastic power system will cause new

problems. Firstly, there will be a reasonable definition for stochastic stability; secondly, how

should one select Lyapunov function V(t,x) and should one generalize stability conditions for

equations in the form of V(t,x)0? Stochastic stability will contain at least three different types:

probability-based stability, moment stability and orbital stability, for which there are detailed

definitions in books on stochastic differential equation [1]. In 1965, Bucy [7] proposed that the

stochastic Lyapunov function will be equipped with the abovementioned properties and

proposed sufficient conditions of probability-based stability and moment stability. Has'minskii

studied orbital stability of a linear stochastic differential equation in 1967 [8]. There is a wide

range of research on stability in theories concerning stochastic differential equations and many

mathematicians have done much related work. Representational literature includes [11, 13].
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It this thesis, the Lyapunov function is adopted to establish a generalized principal, and it

proposes the judging criteria for the constant delay stochastic differential equation; namely the

uniqueness of a global solution and stability of its zero solution exponent regarding equation

(1) when y(t)=x(t-T). Then, the equation coefficients f and g are subject to growth limitation

based on further results, which specifies the generalized conditions and acquires conditions to

depend directly on equation coefficients. Lastly, the effectiveness of results in this paper is

verified through two specific examples.

3. Uniqueness and stability of global solution

Firstly, in terms of function v(x) which satisfies certain conditions, the judging criteria for

the uniqueness of a global solution to equation (1) is established by proposing growth limiting

conditions of v(t,x,y).

According to theorem 1, there are positive constants K and P, non-negative decreasing

function, non-negative increasing function  Q t and function V(x)C2(Rn), and that:

   ,
p nconst x V x x  (3)

            , , 1 , 0, , nV t x y t K Q t V x V y t x y          (4)

where K is based on (1). Then C  and equation (3) has unique global solution  ,x t  .

For verification, set C  . As equation coefficients f and g satisfy the assumed theorem 1, it

can be verified by adopting a standard truncation function technique [18] and a theorem similar

to theorem 2 in [14] where equation (3) has a unique maximum local solution     ,x t x t t      ,

where  is the blasting time.

Set k0 is a sufficiently large positive number which make k0. For any kN and kN,

and establish that for the time-stopping sequence, k is obviously monotonically increasing for

k when kk0. In case kk0, and that {-t:x(t)k}=, then x(t) is bounded within [-,).

This means that =. In this case, it is obvious that =. In case of any kk0, there is {-

t:x(t)k}=, then it is definite that k; therefore, there is also . It can be

ascertained that to verify =, a, s, it is only necessary to verify t0, when k, P(kt)0.

      

      
k

k k k

k kt

kP t P t V x

E I V x h t


  




  

  
 

(5)
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According to condition (4) and lemma 1:

      

               
       

         

            

     

0

0

0

0

0 0

0

0 (s)

, , 1

1

1

k

k

k

k

k k

t

k

t

t

t

t t

t

k

h t EV x E LV x ds

const E s K s x s y s Q s V x s V y s ds

const constQ t E V x s V y s ds

const constQ t t constQ t E V x s V x s ds

const tQ t constQ t E V x s ds constQ t E V x s ds

M t N t h s d





 

       

     

      

   

 









 

 s

(6)

where M(t) and N(t) are non-negative increasing function and its expression is not required.

According to lemma 1:

     tN t

kh t M t e (7)

Thus,      tN t

kkP t M t e   ; therefore, when k:

     1 0tN t

kP t k M t e    (8)

Then it is verified.

The most common method to determine uniqueness of a global solution to equation (3) is

the following simple method. The special Lyapimov function V(x) is adopted, which can be

deemed as a deduction of theorem 1.

Based on theorem 2, set positive constants P and K and non-negative decreasing function

(t), make V(x)=xp satisfy:

       , , ( ), 0, , nV t x y t k const t x y R     (9)

where (k) is based on equation (90). c and there is a unique solution x(t,) for equations

(1, 2, 3).

Firstly, it is assumed that any t0, and f(t,0,0)=g(t,0,0)0. Therefore, x(t,0)0; namely, the

zero solution for equation (1) is its equilibrium solution.

In this thesis, exponential stability is the research subject. There are two cases, namely p-

moment exponential stability and almost surely orbital exponential stability, which are

expressed as the following asymptotic estimation:

 ln ,
lim sup

p

t

E x y

t






  (10)
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 ln ,
limsup , . .

t

E x y
q a s

t





  (11)

In this section, judging criteria for stability of equation (1) are established with the

adoption of the properly selected Lyapunov function V(x) and are based on growth limitations

for V(t,x,y). Compared with the foregoing articles and comprehending in an intuitive manner,

stability has a stronger limitation than boundedness for growth tendency of the equation’s

solution. In terms of stability, the solution will tend asymptotically to an equilibrium solution,

which creates a growth limitation for V(t,x,y) stronger than control conditions in foregoing

articles, and stability is acquired when the uniqueness of a global solution to the equation is

ensured.

Firstly, the following generalized theorem is established based on the semi martingale

convergence theorem.

In terms of theorem 3, set positive constant P, and this makes function V(x)=xp satisfy:

       , , , 0, , nV t x y k aV x t x y R   

(12)

where (k) is based on equation (9). Then there is

ln
=

K
a




; for any initial value c, and

there will be a unique global solution x(t,) for equation (1), which satisfies equations (6) and

(7).

If condition (8) in theorem 2 is satisfied based on V(x)=xp and condition (7), it then can

be deduced by adopting theorem 2 that for any initial value c, there will be a unique global

solution x(t,) for equation (1).

The initial value is set as c, and x(t)= x(t,), h(t)=enV(x(t))

          0 [ ( ) V ] dsrth t h e V x t x s M t    (13)

           
0

( ( )) , , y V ] ds
t

rt
xM t e V x s g s x s s dw s x s  (14)

             
0 0

[ ( ( )) ] [ , , ]
t t

rt rt
xe V x s V x s ds e k s x s y s aV x s V x s ds const       

(15)

At the last step, lemma 3 and
ln

=
K

a


 are adopted. Therefore,    h t const M t  . Thus, it can be

obtained according to semi-martingale convergence theorem that:
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   limsup , limsup . .
t t

Eh t h t a s
 

  (16)

It can be respectively deduced that equations (7) and (8) are true.

4. Further results

Next, the theorems in last section are adopted to obtain a series of more applicable judging

theorems of which conditions are more specific. Further specification is realized with the

selection of specific function  V x , to make it directly related to equation coefficients f and g,

which are more applicable in practical cases.

Firstly, the following two alternative assumed conditions are provided for equation

coefficients f and g:

Assumption 1: (unilateral linear growth), set  as a positive constant,  and  that  is a

non-negative constant. For any  , , y n nt x      ,

 
2 2

2 , ,Tx f t x y x y    (17)

 
2 2 2

, ,g t x y x y    (18)

Assumption 2: (multinomial growth), set 0 and  as positive constants, t , t , t . And that

t is a non-negative constant. 1 20 L        . For any  , , y n nt x     

   2 2+ 2 2

0
1

2 , , +
L

l lT
l

l

x f t x y x y x l y
  

   
 



    (19)

   2 2 2

1

, ,
L

l l
ll

l

g t x y x y
 

 
 



  (20)

The following result can be obtained with adoption of theorem 3:

Theorem 4, assuming that 1 is true, then:

      (21)

For any initial value c, equation (1) will have a unique global solution x(t,), which

satisfies equations (8) and (9). Where y is the only positive root:

- - )e     （ (22)

of equation (22) Set  
2

V x x , and based on equation (15):

     
2

, , 2 , , , ,TV t x y x f t x y g t x y  (23)
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Substitute conditions (11) and (12) into the equation above:

 

   

2 2 2 2

2 2

, , -V t x y x y x y

x y

   

   

   

    
(24)

Set k=ert, and it can be obtained based on the equation above that:

       
   

2 2

2 2

, , KV t x y U y KU x K x x

x y

    

   

        
 

    




(25)

Where
    2

+U x x 
, and k is based on equation (12),

 = - -K    
.

Based on theorem 3 it can be ascertained that equations (8) and (9) are true. Therefore, the

conclusion can be verified as true. Similarly, the following theorem can be obtained.

Theorem 4:  is a positive constant, t, t , t. And t is non-negative constant which

satisfies:

 
2

2 , ,0Tx f t x x  (26)

   
2

, , , ,0f t x y f t x y   (27)

 
2 2 2

, ,g t x y x y   (28)

For any , nx y and that 0t  . If:

2      (29)

For any initial value
  

0
,0 ;b n

pC   
, equation (1) will have a unique global solution

x(t,) which satisfies equations (8) and (9). Where y is the only positive root of the following

equation:

- - - e      （ ） (30)

Theorem 5 set assumption (18) is true, and:

 0

1

L

l ll l
l


    

 

     (31)

For r any initial value c, equation (1) will have a unique global solution x(t,), which

satisfies equations (8) and (9).

Verification. Set  
2

V x x , and according to equation (15):
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     
2TV , , =2x , , , , 0t x y f t x y g t x (32)

Substitute conditions (13) and (14) into the above equation:

      2 2 2 2

0
1

, , +
L

l l

l

V t x y x x l l x l l y
  

     
  



      (33)

Set
   0

0
1 1

L L

l ll l
l l

K


    
  

 
     
 

 
; in case

 
1

= 0
L

l l

l

 



, set 0K 

.

Therefore, constant K satisfies 1kk0:

          
2 2 2 2

0
1

, , + +
L

l l

l

V t x y x x l l x l l y U y KU x
  

     
  



       (34)

Where
   

2

1

L
l

l l
l

U x x


 




 
.

As kk0,
  

1

L

l ll l
l

K    


   
. Apply the above equation to theorem 3:

      

  

2 2 2

1

2

1

, , +
L

l l
l ll l

l

L

l ll l
l

V t x y x x y

K x

  
    

    

  





    

   




(35)

Where  is based on equation (17) and substitute it into equation (15) to obtain the

equation:

    , , KV t x y V x s   (36)

Where k is based on equation (12),
  0

1

L

l ll l
l

a K     


    
. Set

ln
=

K
a




, it can be

known that equations (8) and (9) are true based on theorem 3.

Next, we will try to find the most suitable 0(1, ]K K to make

ln
=

K
a




realize the maximum

value. It is obvious that the value of a decreases as k increases. Set
ln

=
K

a
 , and assume that K1

is the only positive root of the following equation:

  0
1

ln L

l ll l
l

K
K     

 

     (37)

It is obvious that k11. In case k1k0, set kk1 and
1ln

= =
K

a
 .
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In case k1k0, set k=k1 and
  0

1

L

l ll l
l

a K     


    
. It can be known from k1k0

and definition of 1K that:

  1
0

1

lnln
=

L

l ll l
l

KK
K      

  

     

0 0ln ln
= =

K K
a

 
 (38)

Therefore, the conclusion to be verified is true.

5. Exemplification and analysis

In this section, the effectiveness of the judging theorem obtained in the foregoing section

will be illustrated through two specific examples.

Example 1: in terms of the following two dimensional stochastic differential equation:

           3
1 1 1 2 15 2 1dx t x t x t x t dt x t dw t       

             3
2 1 2 2 1 25 5 - 1 1dx t x t x t x t x t dt x t dw t         (39)

Where   2
1 2,

T
x x x 

and w(t) is one-dimensional Brown motion.

The stability of equation (39) is tested with the adoption of theorem 1. Defining y(t)=x(t-1)

arrives at:

  3
1 1 1 2, , 5 2f t x y x x y   

  3
2 1 2 2 1, , 5 5f t x y x x x y   

 1 1, ,g t x y x

 1 1, ,g t x y x

      1 2, , , , , , ,
T

f t x y f t x y f t x y

      1 2, , , , ,g , ,
T

g t x y g t x y t x y (40)

Equation (3) then can be rewritten in standard form as

           , , y , , y ( )dx t f t x t t dt g t x t t dw t 
.
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It can be obtained with adoption of Young in equation that:

 
2 2

2 , , 4Tx f t x y x y  

 
2 2 2

, , =g t x y x y (41)

Therefore, set =1, =4, =1, =1    , to make assumption (1) is satisfied. =4 =3      , it

can be learned from theorem 1 that, equation (39) has a stable zero solution exponent no matter

in terms of mean square or orbit. Namely, equation 39 satisfies equations (8) and (9). Where 

is the unique positive root of the following equation:

3- =2e (42)

Based on approximate calculation, 0.3001

Example 2: following is the test of another stochastic delay differential equation:

           
3

3 2 2
1 1 1 2 23 1dx t x t x t x t dt x t dw t       

           
3

3 2 2
2 2 2 1 13 1dx t x t x t x t dt x t dw t       

(43)

Where   2
1 2,

T
x x x  and  w t is one-dimensional Brown motion.

Stability of equation (43) will be verified with adoption of equation (43). Define y(t)=x(t-

1), then:

  3 2
1 1 1 2, , 3f t x y x x y  

  2 3
2 1 2 2, , 3f t x y x x x  

 
3

2
1 2, ,g t x y x

 
3

2
2 1, ,g t x y y

      1 2, , , , , , ,
T

f t x y f t x y f t x y

      1 2, , , , ,g , ,
T

g t x y g t x y t x y (44)

Equation (43) then can be rewritten in standard form as            , , y , , y ( )dx t f t x t t dt g t x t t dw t  . It

can be obtained with adoption of Young in equation that:
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 
2 4 3 34

2 , , 2 6 2
3

Tx f t x y x x x y    

 
2 3 3

, ,g t x y x y  (46)

Therefore, set 0 1=1, =2, 4 / 3, =1, =11=6, =2,       , to satisfy assumption (18). It is

obvious that
0

1

1
=6 8=6 =5

3


    


     1

, where p = 1/4 according to equation (17). It can be

known from theorem 3 that, equation (43) has stable zero solution exponent no matter in terms

of mean square or orbit. Namely, equation 43 satisfies equations (8) and (9). Set:

 0

0

9

7

l l

l l

K


  



 

  

 


(47)

K1 is the unique positive root of the following equation:

1 7
ln 2 3

4 3
K K

 
   

 
(48)

Based on approximate calculation, 1 1.4757K  . As
1 0

9
1.4757 1.2857

7
K K   

, it can be

known from theorem 3 that:

1ln
= 0.2513

K



 (49)
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